Schedule

Author

Davi Moreira

Week Day Date Topic Book Sections* Slides** Data Supplementary Materials
1 M Jan 13 Intro. & Basic Stat. & Prob. Review 01 Syl., 1.2, 1.4, 1.5 slides data - Video: The NBA Data Scientist
- Video: Hans Rosling’s 200 Countries, 200 Years
- IMS: Introduction to data
1 W Jan 15 Basic Stat. & Prob. Review 02 1.8, 3.3 (omit Chebyshev), 3.4, 3.5 slides data - Video: Data Basics
- Video: Summarizing and Graphing Numerical Data
- Video: Exploring Categorical Data
- IMS: Exploratory data analysis
1 F Jan 17 Basic Stat. & Prob. Review 03 6.2, t Dist. Supplement slides . - Video: Normal Distribution
2 M Jan 20 MARTIN LUTHER KING JR. DAY (No class - TBD) . . .
2 W Jan 22 Int. Est. Review 8.1, 8.2, 8.3, 8.4 slides . - Video: Point Estimates
- Video: Confidence Intervals
- Video: t-distribution
2 F Jan 24 Hyp. Testing Review 01 9.1, 9.2, 9.4, 9.5 slides . - Video: Hypothesis Testing Fundamentals
2 S Jan 26 Homework 01 Due date Basic Stat. & Prob. Review . . .
3 M Jan 27 Hyp. Testing Review 02 11.1, 11.2 slides data - Nature: Statisticians issue warning over misuse of P-values
3 W Jan 29 Quiz 1 Review Material . . .
3 F Jan 31 Analysis of Variance 13.1, 13.2 slides data - Video: ANOVA Introduction
- Video: Conditions for ANOVA
- Video: Multiple comparisons
3 S Feb 2 Homework 02 Due date Int. Est. & Hyp. Testing Review . . .
4 M Feb 3 Simple Regression 14.1 slides data - Video: Line Fitting & Correlation
4 W Feb 5 Simple Regression 14.2, 14.3 slides . .
4 F Feb 7 Simple Regression 14.4, 14.5 slides . .
5 M Feb 10 Simple Regression 14.6, 14.7 slides . .
5 W Feb 12 Simple Regression 14.8 slides . .
5 F Feb 14 Simple Regression 14.9 slides . .
5 S Feb 16 Homework 03 Due date Simple Regression . . .
6 M Feb 17 Midterm 1 Review Analysis of Variance & Simple Regression . . .
6 W Feb 19 Midterm 1 (TBD pm–TBD pm, TBD in class?) Analysis of Variance & Simple Regression . . .
6 F Feb 21 Multiple Regression 15.1, 15.2 slides data - Video: Introduction to Multiple Regression
7 M Feb 24 Multiple Regression 15.3 slides . .
7 W Feb 26 Multiple Regression 15.4 slides . .
7 F Feb 28 Multiple Regression 15.5 slides . .
8 M Mar 2 Multiple Regression 15.6 slides . .
8 W Mar 5 Multiple Regression 15.7 slides . .
8 F Mar 7 Quiz 2 Multiple Regression . . .
8 S Mar 9 Homework 04 Due date Multiple Regression, Pt. 1 . . .
9 M Mar 10 Model Building 16.1 slides data - Video: Model Selection in Multiple Regression
9 W Mar 12 Model Building 16.2 slides . .
9 F Mar 14 Model Building 16.3, 16.4 slides . .
10 M Mar 17 Spring Break (No class) . . .
10 W Mar 19 Spring Break (No class) . . .
10 F Mar 21 Spring Break (No class) . . .
10 S Mar 23 Homework 05 Due date Multiple Regression, Pt. 2 . . .
11 M Mar 24 Logistic Regression Supplement in Brightspace & Slides slides . - Video: Basic Ideas of Logistic Regression
11 W Mar 26 Logistic Regression Supplement in Brightspace & Slides slides . .
11 F Mar 28 Logistic Regression Supplement in Brightspace & Slides slides . .
11 S Mar 30 Homework 06 Due date Logistic Regression . . .
12 M Mar 31 Midterm 2 Review Mult. Regr., Model Bldg., Log. Regr. . . .
12 W Apr 2 Midterm 2 (TBD pm–TBD pm, TBD in class?) Mult. Regr., Model Bldg., Log. Regr. . . .
12 F Apr 4 Time Series 17.1, 17.2 slides data Video: Time Series Forecast Using Forecast Sheet in Excel
13 M Apr 7 Time Series 17.3 slides . .
13 W Apr 9 Time Series 17.4 slides . .
13 F Apr 11 Time Series 17.5, 17.6 slides . .
13 S Apr 13 Homework 07 Due date Time Series . . .
14 M Apr 14 Quiz 3 Time Series . . .
14 W Apr 16 Quality Control 19.1 slides . .
14 F Apr 18 Quality Control 19.2, 19.3 slides . .
15 M Apr 21 Decision Analysis 20.1 slides . - Video: Bayes theorem
15 W Apr 23 Decision Analysis 20.2 slides . .
15 F Apr 25 Decision Analysis 20.3, 20.4 slides . .
15 S Apr 27 Homework 08 Due date Quality Control & Decision Analysis . . .
16 M Apr 28 Final Exam Review Cumulative . . .
16 W Apr 30 Final Exam Review Cumulative . . .
16 F May 2 Final Exam Preparation No class . . .
17 TBD Final Exam (TBD pm–TBD pm, TBD) Cumulative . . .

*Section Numbers refer to sections in the course textbook.

** Course material adapted from the textbook and previous course editions to better fit our curriculum. Thanks to Professor Jen Tang for guidance and for generously sharing the materials.